

bq24745 EVM (HPA272) for Multi Cell Synchronous Switch-Mode Charger

Contents

1	Introdu	uction	2
	1.1	EVM Features	2
	1.2	General Description	2
	1.3	EVM Connection Descriptions	
	1.4	Controls and Key Parameters Setting	
	1.5	Recommended Operating Conditions	
2	Test S	Summary	
	2.1	Test Procedure Naming Conventions	4
	2.2	Required Equipment and Software	
	2.3	Software Installation	
	2.4	Equipment Setup	5
	2.5	Test Procedures	
3	PCB L	ayout Guidelines	
4		Materials, Board Layout, and Schematic	
	4.1	Bill of Materials	
	4.2	Board Layout	
	4.3	Schematic	

List of Figures

1	EV2300 Kit Connections	. 5
2	bq24745 EVM Original Test Setup	. 6
3	bq24745 SMB Evaluation Software (Main Window)	. 7
4	bq24745 EVM (HPA272) Test Setup	. 9
5	Top Routing Layer	
6	Second Routing Layer	14
7	Third Routing Layer	15
8	Bottom Routing Layer	
9	Top Assembly	17
10	Bottom Assembly	18
11	Top Silkscreen	19
12	bg24745 EVM Schematic (Sheet 1 of 2)	20
13	bq24745 EVM Schematic (Sheet 2 of 2)	21

List of Tables

1	bq24745 EVM Connections	2
	Controls and Key Parameters	
	Recommended Operating Conditions	
4	Required Equipment and Software	4
	bq24745EVM Bill of Materials	

1

1 Introduction

1.1 EVM Features

- Evaluation Module For bq24745
- High Efficiency NMOS-NMOS Synchronous Buck Charger With 300 kHz Frequency
- User-selectable 1-cell, 2-cell, 3-cell, or 4-cell Li-ion Battery Voltage
- Programmable Battery Voltage, Charge Current, and AC Adapter Current via SBS-Like SMBus Interface
- AC Adapter Operating Range 18 V to 22 V
- LED Indication for Control and Status Signals.
- Test Points for Key Signals Available for Testing Purpose. Easy Probe Hook-up.
- Jumpers Available. Easy to Change Connections.

1.2 General Description

The bq24745 evaluation module is a complete charger module for evaluating a multi-cell synchronous notebook charge using the bq24745 devices. It is designed to deliver up to 8 A of charge current to Li-Ion or Li-Pol applications.

The bq24745 has a highly integrated battery charge controller designed to work with external host commands. The charge voltage, charge current, and input current are programmable using an SBS-like SMBus interface.

The dynamic power management (DPM) function modifies the charge current depending on system load conditions, avoiding ac adapter overload. High accuracy current sense amplifiers enable accurate measurement of the ac adapter current, allowing monitoring of overall system power.

For complete specifications and details, see bq24745 data sheet (SLUS761).

1.3 EVM Connection Descriptions

Jack		Description					
J1–ACPWR		AC adapter, positive output					
J1–GND		AC adapter, negative output					
J2–CE		CE pin output					
J2–SDA		SDA pin output, SMBus data line					
J2–SCL		SCL pin output, SMBus clock line					
J3–VEXT		External power supply, positive output					
J3–GND		External power supply, negative output					
J4–ACOK		ACOK pin					
J4–ICOUT		ICOUT pin					
J4–VICM		VICM pin					
J4–VREF		IC reference voltage VREF					
J5–1	ACDRV	ACDRV signal					
J5–2	ACDRV	LED drive					
J6–1	BATDRV	BATDRV signal					
J6–2	DAIDRV	LED drive					
J7–1	DIS CHG	CE pin					
J7–2	DISCHG	GND					

Table 1. bq24745 EVM Connections

Ja	ack	Description					
J8–HI		Pull-up voltage source					
J8–LEDPWR		ED Pull-up power line					
J9–VREF		C reference voltage VREF					
J9-VDDSMB		DDSMB pin					
J9–EXT		External voltage supply from J3					
J10–GND		Ground					
J10–BAT		Connected to battery pack					
J10–SYS		Connected to system					
J11–1	BYPASS	BYPASS signal					
J11–2	DIFASS	LED drive					

Table 1. bq24745 EVM Connections (continued)

1.4 Controls and Key Parameters Setting

Table 2. Controls and Key Parameters

Jack	Description	Factory Setting
J5	Conduction of the AC MOSFET indicated when LED lights	Jumper On
J6	Conduction of the battery MOSFET indicated when LED lights	Jumper On
J7	Disable charge process when on	Jumper On
J8	Pull-up power source supplies the LEDs when on LED has no power source when off	Jumper On
	VDDSMB voltage source setting	
J9	1-2 : Connect VREF to VDDSMB	Jumper on 2-3 (EXT and VDDSMB)
	2-3 : Connect external voltage source to VDDSMB	
J11	Conduction of the BYPASS MOSFET indicated when LED lights	Jumper On

1.5 Recommended Operating Conditions

Table 3. Recommended Operating Conditions⁽¹⁾

	Parameter	Description	MIN	ТҮР	MAX	Unit
V _{IN}	Supply voltage	Input voltage from ac adapter input	18	19	22	V
V_{BAT}	Battery voltage	Voltage applied at VBAT terminal of J8	0	3 to 16.8	20	V
I _{AC}	Supply current	Maximum input current from ac adapter input	0		4.5	А
I _{chrg}	Charge current	Battery charge current	2	3 to 4	8	А
TJ	Operating junction temperature range		0		125	°C

⁽¹⁾ For complete specifications and details, see the bq24745 data sheet (<u>SLUS761</u>).

2 Test Summary

This section describes how to configure the bq24745 evaluation board and provides:

- Test Procedure Naming Conventions
- Required Equipment and Software
- Equipment Setup
- Software Installation
- Test Procedures

2.1 Test Procedure Naming Conventions

See the bq24745 schematic for details. On the test procedure these naming conventions are used.

VXXX	External voltage supply name (VADP, VBT, VSBT)
LOADW	External load name (LOADR, LOADI)
V(ТРууу)	Voltage at internal test point TPyyy. For example, V(TP12) means the voltage at TP12.
V(Jxx)	Voltage at jack terminal Jxx
V(TP(XXX))	Voltage at test point "XXX". For example, V(ACDET) means the voltage at the test point which is marked as <i>ACDET</i> .
V(XXX, YYY)	Voltage across point XXX and YYY.
I(JXX(YYY))	Current going out from the YYY terminal of jack XX
Jxx(BBB)	Terminal or pin BBB of jack xx
Jxx ON	Internal jumper Jxx terminals are shorted
Jxx OFF	Internal jumper Jxx terminals are open
Jxx (-YY-) ON	Internal jumper Jxx adjacent terminals marked as YY are shorted
Measure \rightarrow A,B	Check specified parameters A, B. If measured values are not within specified limits, the unit under test has failed.
$Observe \to A,\!B$	Observe if A, B occur. If they do not occur, the unit under test has failed.

Assembly drawings have the locations for jumpers, test points, and individual components.

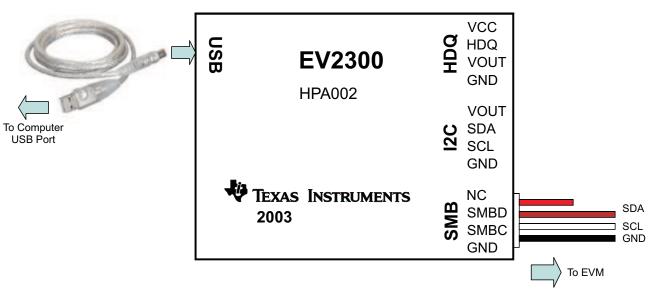
2.2 Required Equipment and Software

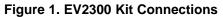
CATEGORY	NUMBER	DESCRIPTION of REQUIRED ITEM
	PS#1	Can supply 20 V at 5 A
Power Supplies	PS#2	Can supply 5 V at 1 A
	PS#3	Can supply 20 V at 5 A
Leado	Number 1	A 30 V (or greater), 5 A (or greater) electronic load that can operate at constant current mode
Loads	Number 2	An HP 6060B (3 to 60 V) / (0 to 60 A), 300 W system DC electronic load, or equivalent
	Set #1	Seven Fluke 75 multimeters, (equivalent or better)
Meters	Alternative set	Four equivalent voltage meters and three equivalent current meters. Current meters must be capable of measuring 5 A current, or greater.
Computer	One	One USB port, with a USB cable Operating System: Windows 2000 or Windows XP
Communications Kit	One	EV2300 SMBUS Kit that supports SMB four-wire communications
Setturere	EV2300 USB driver	File: Driver(USB EV2300) Installer XP2K-Last updated Jan28-04.zip
Software	bq24745 SMB evaluation	File: bq24745bench_v141.zip

Table 4. Required Equipment and Software

2.3 Software Installation

To install the two software packages necessary to perform the test procedures, use this procedure:


1. Save and unzip the EV2300 USB driver, **Driver(USB EV2300) Installer XP2K-Last updated Jan28-04.zip** filename, to a temporary directory (*c:\temp* or another directory).



- 2. Double-click on the **setup.exe** installation file.
- 3. Follow steps displayed by the Installshield wizard that include license agreement, installation directory selection, and completion.
- 4. Save and unzip the bq24745 SMB evaluation, **bq24745bench_v141.zip** filename, to a temporary directory (*c:\temp* or another directory).
- 5. Double-click on the **setup.exe** installation file.
- 6. Follow steps displayed by the Installshield wizard that include license agreement, installation directory selection, and completion.

2.4 Equipment Setup

- 1. Set power supply #1 to 0 V \pm 100 mVDC, 5.0 \pm 0.1 A current limit and then turn off the power supply.
- 2. Connect the output of power supply #1 in series with a current meter (multimeter) to J1 (VIN, GND).
- 3. Connect a voltage meter across J1 (VIN, GND).
- 4. Set power supply #2 fto 3.3 V \pm 100 mVDC, 1.0 \pm 0.1 A current limit and then turn off the power supply.
- 5. Connect the output of the power supply #2 to J3 (VEXT, GND).
- 6. Turn off Load #1.
- 7. Turn off Load #2.
- 8. Connect a voltage meter across J10 (BAT, GND).
- 9. Connect a voltage meter across J10 (SYS, GND).
- 10. Connect J2 (SDA, SCL) and J3 (GND) to the EV2300 kit *SMB* port. Connect the USB port of the EV2300 kit to the USB port of the computer. The connections are shown in Figure 1

5

11. Ensure J5: ON, J6: ON, J7: ON, J8: ON, J9 (VDDSMB, EXT): ON, and J11: ON. After these previous eleven steps, the test setup for bq24745EVM (HPA272) is shown in Figure 2.

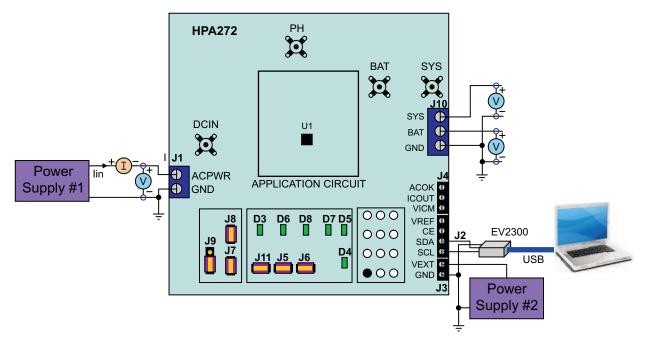


Figure 2. bq24745 EVM Original Test Setup

12. Start the host computer. Start the bq24745 evaluation software by using the cascading menus to select the start \rightarrow All Programs \rightarrow Texas Instruments \rightarrow bq24745 Evaluation Software command. The EVM Software displays as shown in Figure 3.

bq24745 Ev File I2C Option		Softwa	re																
Tex		RUME	NTS				Tech	nolo	av fo	r Inn	ovat	ors™							
Charge Current (110		-				97.0										
			.	. [_		_	Read	ł	
0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1		mΑ	Write	,	
Charge Voltage	(Add: 0u1)	5																	
charge volkage	l l	" I I		1							_						Read	H	
0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0			mV	Write	,	
- Input Current (Ar	ddr 0x3F)-																Read	H	
0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0			mΑ	Write	.	
Manufacturer ar	nd Device	ID (Addr ()xFE-0xl	FF)															🗆 Refresh Time
Manufacturer ID		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0			hex	1 sec
(0xFE)																		TICA.	Input by File
Device ID		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	ı			i mpat by rile
(0xFF)	Ľ			Ľ														hex	
																	Read		

Figure 3. bq24745 SMB Evaluation Software (Main Window)

7

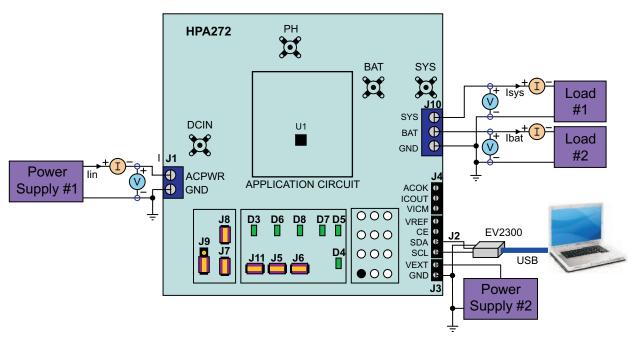
Test Summary

2.5 Test Procedures

AC Adapter Detection Threshold Procedure

- 1. Ensure that all Equipment Setup steps are completed.
- 2. Turn on power supply two.
- 3. Turn on power supply one.
- 4. Make these voltage measurements:
 - V(J10(SYS)) = 0 V ± 500 mV
 - V(TP(VREF)) = 0 V ± 1000 mV
 - $V(TP(VDDP)) = 0 V \pm 500 mV$
- Increase the output voltage of power supply one until LED D5 (ACOK) lights without exceeding 20 V output limit.
- 6. Make these voltage measurements:
 - V(TP(ACIN)) = 2.4 V ± 200 mV
 - V(J1(VIN)) = 17.9 V ± 1 V
 - V(J10(SYS)) = 17.9 V ± 1 V
 - V(TP(VREF)) = 3.3 V ± 200 mV
 - V(TP(VDDP)) = 0 V ± 500 mV
- 7. Observe that these LED diodes light:
 - D3 (BYPASS)
 - D6 (ACDRV)

Charger Parameters Setting Procedure


- 1. Increase the voltage of power supply one until you measure V(J1(VIN)) = 19 V \pm 0.1 V.
- 2. Measure the voltage V(J10(BAT, GND)) = 0 V \pm 1 V.
- 3. Go to the **bq24745 Evaluation Software** window and click all four **Read** buttons. Make sure no error information messages display.
- 4. To set the battery charge current regulation threshold, click in the **Charge Current** text field **mA**, type *512*, and click the **Write** button.
- 5. Click in the **Charge Voltage** text field **mV**, type *12592*, and click the **Write** button to set the battery voltage regulation threshold.
- 6. To set the input current regulation threshold, click in the **Input Current** text field **mA**, type *4608*, and click the **Write** button.
- 7. Uninstall J7 to enable the charging.
- 8. Observe that the LED D4 (CHG EN) lights.
- 9. Make these voltage measurements:
 - V(J10(BAT)) = 12.6 V ± 200 mV
 - V(J4(ICOUT)) = 3.3 V ± 300 mV
 - $V(TP(VDDP)) = 6 V \pm 500 mV$

Charge Current and AC Current Regulation (DPM) Procedure

- 1. Install J7 to disable the charging.
- 2. Connect the Load Two in series with a current meter (multimeter) to J10 (BAT, GND). Make sure a voltage meter is connected across J10 (BAT, GND).
- 3. Turn on the Load Two using the constant voltage mode. .
- 4. Set the output voltage of to 10.5 V for Load Two
- 5. Connect the output of the Load One in series with a current meter (multimeter) to J10 (SYS, GND). Make sure a voltage meter is connected across J10 (SYS, GND).
- 6. Turn on the power of Load One.

- 7. Set the load current to 4.0 A \pm 50 mA, but disable the Load One output.
- 8. Make sure I_{bat} = 0 A ± 10 mA and I_{sys} = 0 A ± 10 mA. Your bq24745 (HPA272) test setup should look like Figure 4.

- 9. Uninstall J7 to enable the charging.
- 10. Observe that LED D4 (CHG EN) lights.
- 11. Set the battery charge current regulation threshold to 2.944 A by clicking in the **Charge Current** text field **mA**, type *2944*, and click the **Write** button.
- 12. Make these current and voltage measurements:
 - I_{bat} = 3000 mA ± 300 mA
 - V(TP(VICM)) = 350 mV ± 100 mV
 - V(J4(ICOUT)) = 3.3 V ± 300 mV
- 13. Observe that LED D7 (LO PWR MODE) lights.
- 14. Enable the output of Load One.
- 15. Make these current measurements:
 - $I_{sys} = 4000 \text{ mA} \pm 200 \text{ mA}$
 - $I_{bat}^{3y3} = 1000 \text{ mA} \pm 500 \text{ mA}$
 - $I_{in} = 4600 \text{ mA} \pm 500 \text{ mA}$
- 16. Make these voltage measurements:
 - V(TP(VICM)) = 920 mV ± 100 mV
 - $V(J4(ICOUT)) = 0 V \pm 300 mV$
- 17. Observe that LED D7 (LO PWR MODE) turns off.
- 18. Disable Load One.
- 19. Make these current measurements:
 - $I_{sys} = 0 \text{ mA} \pm 100 \text{ mA}$
 - $I_{bat}^{0,0} = 3000 \text{ mA} \pm 300 \text{ mA}$

Power Path Selection Procedure

- 1. Install J7 to disable the charging.
- 2. Observe that LED D4 (CHG EN) turns off.
- 3. Replace Load Two and the current meter with Power Supply Three.
- 4. Connect a voltage meter across J10 (BAT, GND).
- 5. Enable the output of the Power Supply Three and ensure the output voltage is 10.5 V \pm 500 mV.
- 6. Measure the voltage V(J10(SYS)) = 19 V \pm 1 V (adapter connected to system).
- 7. Observe these LED states:
 - D3 (BYPASS) lights
 - D6 (ACDRV) lights
 - D8 (BATDRV) turns off
- 8. Turn off Power Supply One.
- 9. Measure the voltage V(J10(SYS)) = 10.5 V \pm 1 V (battery connected to system).
- 10. Observe these LED states:
 - D3 (BYPASS) turns off
 - D6 (ACDRV) turns off
 - D8 (BATDRV) lights

3 PCB Layout Guidelines

- 1. It is critical that the exposed power pad on the backside of the bq24745 package be soldered to the PCB ground. Make sure there are sufficient thermal vias right underneath the IC, connecting to the ground plane on the other layers.
- 2. The control stage and the power stage *should be* routed **separately**. At each layer, the signal ground and the power ground are connected only at the power pad.
- 3. AC current sense resistor *must* be connected to CSSP and CSSN with a Kelvin contact. The area of this loop must be minimized. The decoupling capacitors for these pins should be placed as close to the IC as possible.
- 4. Charge current sense resistor must be connected to CSOP, CSON with a Kelvin contact. The area of this loop must be minimized. The decoupling capacitors for these pins should be placed as close to the IC as possible.
- 5. Decoupling capacitors for DCIN, VREF, VDDP should be placed underneath the IC (on the bottom layer) and make the interconnections to the IC as short as possible.
- 6. Decoupling capacitors for BAT, VICM *must* be placed close to the corresponding IC pins and make the interconnections to the IC as short as possible.
- 7. Decoupling capacitor(s) for the charger input *must* be placed very close to Q4 drain and Q5 source.

4 Bill of Materials, Board Layout, and Schematic

4.1 Bill of Materials

Count	RefDes	Value	Description	Size	Part Number	MFR
1	C1	2.2µF	Capacitor, Ceramic, 25V, X5R, 10%	1210	Std	Std
0	C2, C10	Open	Capacitor, Ceramic, 25V, X5R, 10%	1210	Std	Std
0	C3	Open	Capacitor, Ceramic, 35V, X5R, 10%	805	Std	Std
2	C4, C11	10nF	Capacitor, Ceramic, 50V, X7R, 10%	603	Std	Std
1	C5	2000 pF	Capacitor, Ceramic, 50V, C0G, 5%	603	Std	Std
1	C6	51 pF	Capacitor, Ceramic, 50V, C0G, 5%	603	Std	Std
7	C7, C12, C13, C17, C20, C22, C28	0.1µF	Capacitor, Ceramic, 50V, X7R, 10%	805	Std	Std
1	C8	130pF	Capacitor, Ceramic, 50-V, C0G, 5%	603	Std	Std
1	C9	1μF	Capacitor, Ceramic, 25V, X5R, 10%	603	Std	Std
1	C14	100pF	Capacitor, Ceramic, 50V, C0G, 5%	603	Std	Std
3	C15, C19, C21	1µF	Capacitor, Ceramic, 25V, X5R, 10%	805	Std	Std
4	C16, C18, C23, C26	10µF	Capacitor, Ceramic, 25V, X5R, 10%	1210	Std	Std
2	C24, C30	10μF	Capacitor, Ceramic, 25V, X5R, 10%	1206	Std	Std
0	C25	Open	Capacitor, Ceramic, 50V, X7R, 10%	603	Std	Std
2	C27, C29	0.1µF	Capacitor, Ceramic, 50V, X7R, 10%	603	Std	Std
1	D1	BAT54	Diode, Schottky, 200-mA, 30-V	SOT23	BAT54	Vishay- Liteon
1	D2	BAT54C	Diode, Schottky, 200-mA, 30-V	SOT23	BAT54C	Vishay- Liteon
6	D3, D4, D5, D6, D7, D8	Green	Diode, LED, Green, 2.1-V, 20-mA, 6-mcd	LED603	LTST-C190GKT	Lite On
1	J1	D120/2DS	Terminal Block, 2-pin, 15-A, 5,1mm	0.40 x 0.35 inch	D120/2DS	OST
1	J2	ED555/3DS	Terminal Block, 3-pin, 6-A, 3.5mm	0.41 x 0.25 inch	ED555/3DS	OST
1	J3	ED555/2DS	Terminal Block, 2-pin, 6-A, 3.5mm	0.27 x 0.25 inch	ED555/2DS	OST
1	J4	ED555/4DS	Terminal Block, 4-pin, 6-A, 3.5mm	0.55 x 0.25 inch	ED555/4DS	OST
5	J5, J6, J7, J8, J11	PTC36SAAN	Header, 2-pin, 100mil spacing, (36-pin strip)	0.100 inch x 2	PTC36SAAN	Sullins
1	J9	PTC36SAAN	Header, 3-pin, 100mil spacing, (36-pin strip)	0.100 inch x 3	PTC36SAAN	Sullins
1	J10	D120/3DS	Terminal Block, 3-pin, 15-A, 5.1mm	0.60 x 0.35 inch	D120/3DS	OST
6		929950-00	Shorting jumpers, 2-pin, 100mil spacing		929950-00	3M/ESD
4			6-32 NYL nuts			
4		4816	STANDOFF M/F HEX 6-32 NYL 0.500"	sf_thvt_325_rnd	4816	Keystone
1	L1	5.6μΗ	Inductor, SMT, 16A, 24.8mΩ	0.51 x 0.51 inch	IHLP5050CE5R6M01	Vishay
3	Q1, Q2, Q8	Si4435DY	MOSFET, P-ch, 30-V, 8.0-A, 20-mΩ	SO8	Si4435DY	Siliconix
9	Q3, Q6, Q10, Q11, Q13, Q14, Q15, Q17, Q18	2N7002DICT	MOSFET, N-ch, 60-V, 115-mA, 1.2-Ω	SOT23	2N7002DICT	Vishay- Siliconix
2	Q4, Q5	FDS6680A	Transistor, MOSFET, NChan, 30V, 12.5A, Rds 9.5 m Ω	SO8	FDS6680A	Fairchild
1	Q7	NDS0605	MOSFET,P-ch, –60 V, 180-mA, 5 Ω	SOT-23	NDS0605	Vishay
3	Q9, Q12, Q16	TP0610K	MOSFET, P-Ch, 60V, Rds 6 Ω , Id 185 mA	SOT-23	TP0610K	Vishay- Siliconix
2	R1,R40	4.02	Resistor, Chip, 1/2W, 1%	1210	Std	Std
1	R2	430K	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R3	66.5K	Resistor, Chip, 1/16W, 1%	603	Std	Std

Table 5. bq24745EVM Bill of Materials

Count	RefDes	Value	Description	Size	Part Number	MFR
11	R4, R5, R8, R10, R11, R14, R16, R19, R20, R23, R24	10K	Resistor, Chip, 1/16W, 5%	402	Std	Std
1	R6	200K	Resistor, Chip, 1/16W, 1%	402	Std	Std
1	R7	49.9K	Resistor, Chip, 1/16W, 1%	402	Std	Std
1	R9	200K	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R12	7.5K	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R13	4.7K	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R15	1.40M	Resistor, Chip, 1/10W, 1%	805	Std	Std
2	R17, R21	0	Resistor, Chip, 1/16W, 5%	402	Std	Std
2	R18, R26	0.01	Resistor, Chip, 1/2W, 1%	2010	Std	Std
1	R22	1Meg	Resistor, Chip, 1/16W, 5%	402	Std	Std
8	R25, R27, R28, R29, R32, R33, R37, R38	100K	Resistor, Chip, 1/16W, 5%	402	Std	Std
6	R30, R31, R34, R35, R36, R39	2.2K	Resistor, Chip, 1/16W, 5%	603	Std	Std
2	TP1, TP23	5001	Test Point, Black, Thru Hole Color Keyed	0.100 x 0.100 inch	5001	Keystone
4	TP2, TP18, TP19, TP20	131-4244-00	Adaptor, 3.5-mm probe clip (or 131-5031-00)	0.200 inch	131-4244-00	Tektronix
11	TP21, TP22, TP24, TP25, TP26, TP27, TP28, TP29, TP30, TP31, TP32	5002	Test Point, White, Thru Hole Color Keyed	0.100 x 0.100 inch	5002	Keystone
1	U1	bq24745RHD	IC, SMBus-Controlled Level 2 Multi-Chem Battery Charger Controller		bq24745RHD	ті
1	-	HPA272	4x4.25 inch 4 layer 2oz. PCB	4x4.25 inch	PCB	Any

Table 5. bq24745EVM Bill of Materials (continued)

4.2 Board Layout

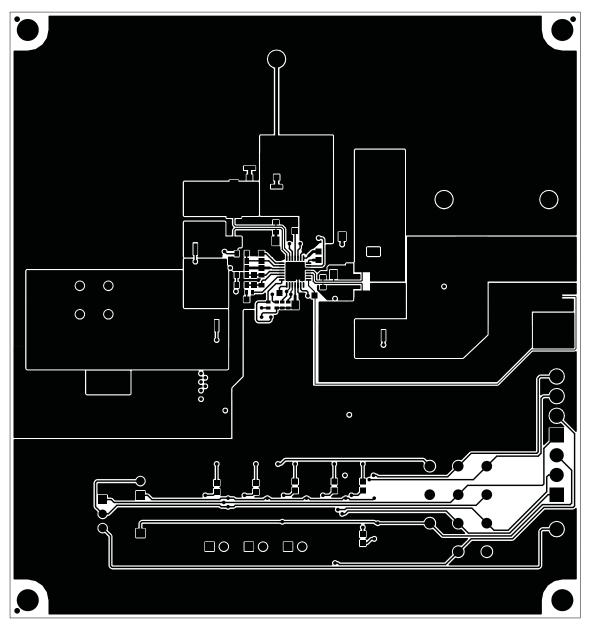


Figure 5. Top Routing Layer

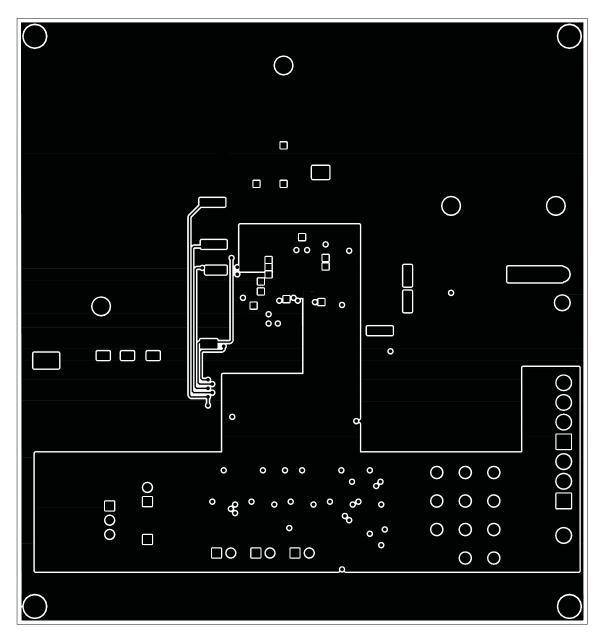


Figure 6. Second Routing Layer

TEXAS INSTRUMENTS www.ti.com

Bill of Materials, Board Layout, and Schematic

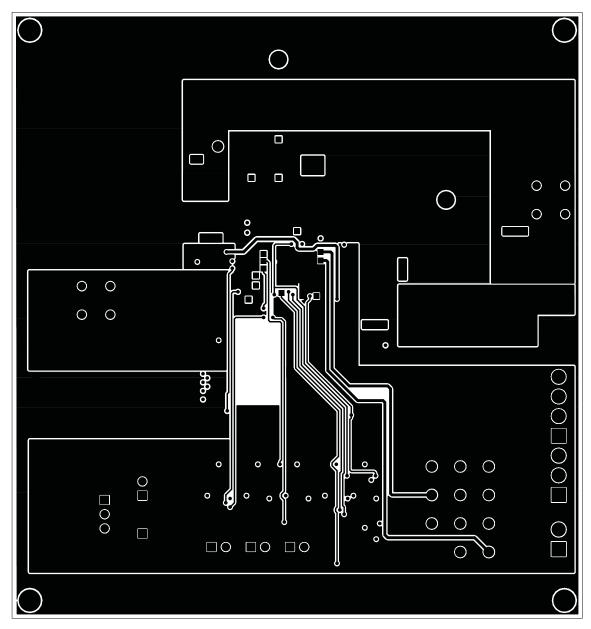


Figure 7. Third Routing Layer

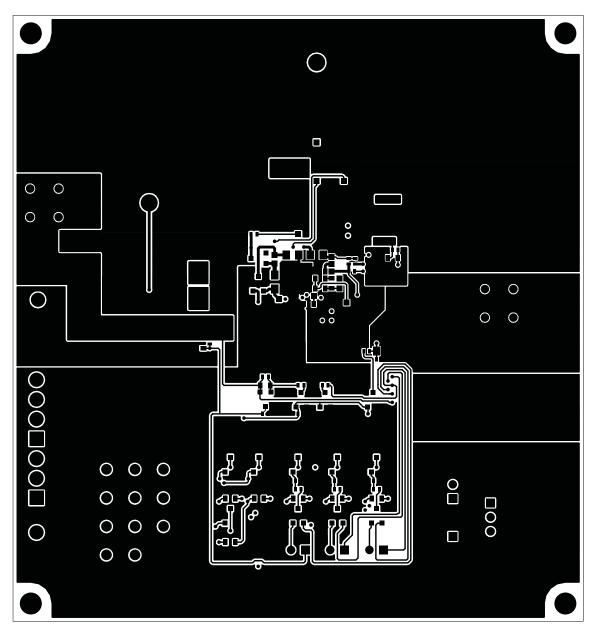


Figure 8. Bottom Routing Layer

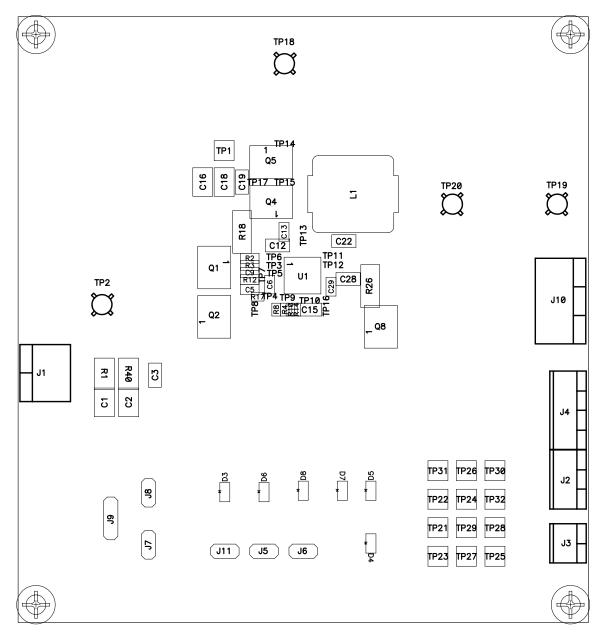


Figure 9. Top Assembly

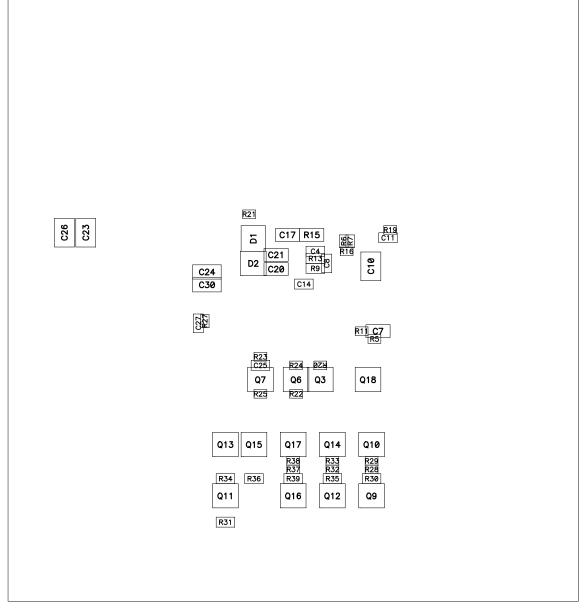


Figure 10. Bottom Assembly

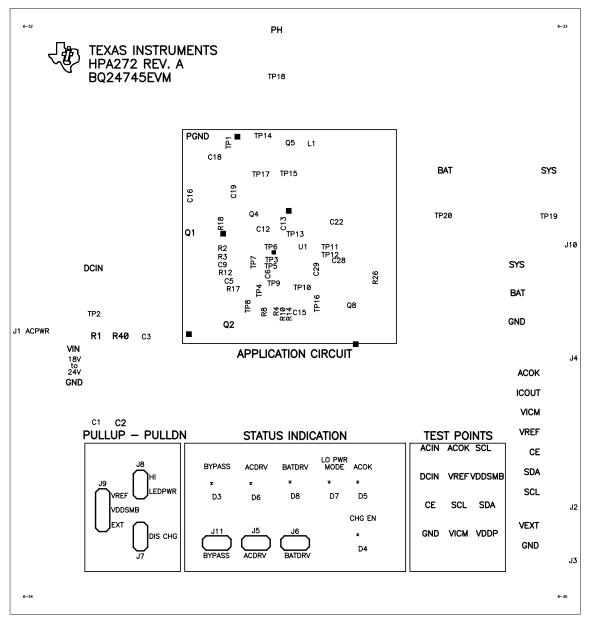


Figure 11. Top Silkscreen

4.3 Schematic

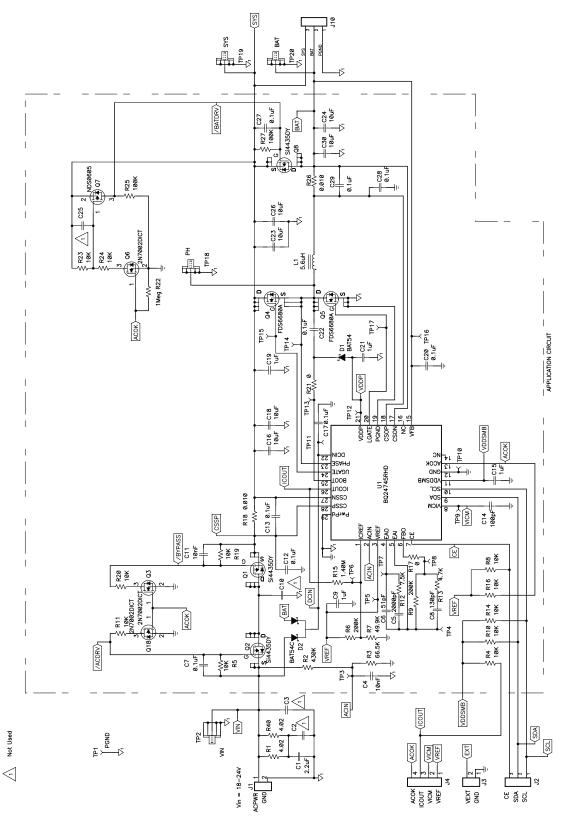


Figure 12. bq24745 EVM Schematic (Sheet 1 of 2)

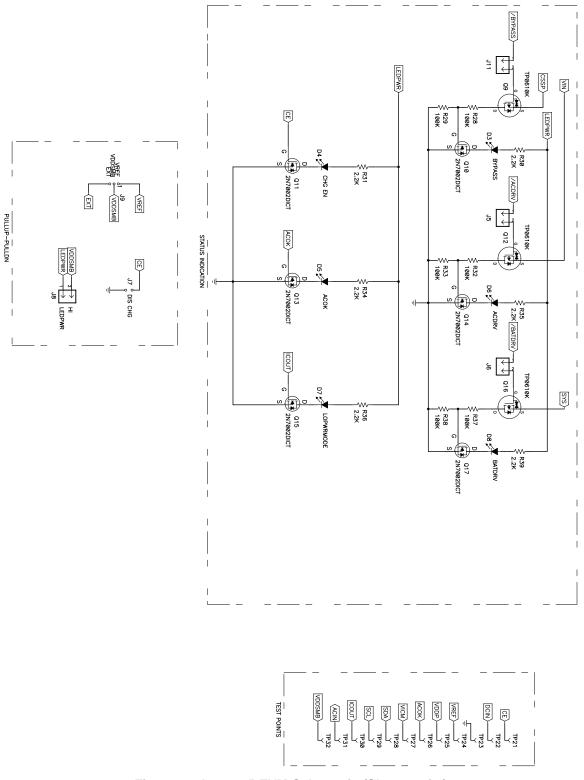


Figure 13. bq24745 EVM Schematic (Sheet 2 of 2)

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit <u>www.ti.com/esh</u>.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 0 V to 22 V and the output voltage range of 0 V to 20 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated